40 research outputs found

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    SEASAT synthetic-aperture radar data user's manual

    Get PDF
    The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres

    Recombinant Vesicular Stomatitis Virus Vaccine Vectors Expressing Filovirus Glycoproteins Lack Neurovirulence in Nonhuman Primates

    Get PDF
    The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses an individual filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV) GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV) GP; three animals received rVSV-wild type (wt) vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use

    Early and Late Pathogenic Events of Newborn Mice Encephalitis Experimentally Induced by Itacaiunas and Curionópolis Bracorhabdoviruses Infection

    Get PDF
    In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share many pathological and clinical features present in other rhabdoviruses but distinct virulence and glial targets in newborn albino Swiss mice brain

    The SIR-C/X-SAR Synthetic Aperture Radar System

    No full text

    Investigating a SoftCache via Dynamic Rewriting

    No full text
    Software caching via binary rewriting enables networked embedded devices to have the benefits of a memory hierarchy without the hardware costs. A software cache replaces the hardware cache/MMU mechanisms of the embedded system with software management of on-chip RAM using a network server as the backing store. The bulk of the software complexity is placed on the server so that the embedded system contains only the application's current working set and a small runtime system invoked on cache misses. We present a design and implementation of instruction caching using an ARM-based embedded system and a separate server and detail the issues discovered. We show that the software cache succeeds at discovering the small working set of several test applications for a reduction of 7 to 14X of the original application code. Further, we show that our software overhead remains small for typical functions in embedded applications. Finally, we discuss the implications of software caching for dynamic optimization, for power savings and for hardware design

    Epstein-Barr virus-encoded small RNAs (EBERs) do not modulate interferon effects in infected lymphocytes.

    No full text
    The recent derivation of otherwise isogenic Epstein-Barr virus (EBV) recombinants carrying or lacking the EBV small RNA (EBER) genes enabled us to test whether EBERs are similar to adenovirus VA RNAs in modulating interferon (IFN) effects on virus infection. EBER-positive and -negative EBV recombinants did not differ in their sensitivity to alpha interferon (IFN-alpha)- or IFN-gamma-mediated inhibition of lymphocyte growth transformation. In addition, EBERs did not decrease the inhibitory effects of IFN on vesicular stomatitis virus replication in EBV-transformed lymphocytes. EBER deletion also did not render EBV-transformed B lymphocytes susceptible to an IFN effect on cell proliferation or EBV replication

    Software Caching using Dynamic Binary Rewriting for Embedded Devices

    No full text
    A software cache implements instruction and data caching entirely in software. Dynamic binary rewriting offers a means to specialize the software cache miss checks at cache miss time. We describe a software cache system implemented using dynamic binary rewriting and observe that the combination is particularly appropriate for the scenario of a simple embedded system connected to a more powerful server over a network. As two examples, consider a network of sensors with local processing or cell phones connected to cell towers. We describe two software cache systems for instruction caching only using dynamic binary rewriting and present results for the performance of instruction caching in these systems. We measure time overheads of 19% compared to no caching. We also show that we can guarantee a 100% hit rate for codes that fit in the cache. For comparison, we estimate that a comparable hardware cache would have space overhead of 12-18% for its tag array and would offer no hit rate guarantee
    corecore